Cyclooxygenase-2 expression and oxidative DNA adducts in murine intestinal adenomas: Modification by dietary curcumin and implications for clinical trials


Cancer Biomarkers and Prevention Group, Departments of Cancer Studies and Biochemistry, University of Leicester, Leicester LE2 7LX, UK

ARTICLE INFO

Article history:
Received 26 July 2005
Received in revised form 17 October 2005
Accepted 25 October 2005
Available online 4 January 2006

Keywords:
Colorectal carcinogenesis
Chemoprevention
DNA damage

ABSTRACT

The natural polphenol, curcumin, retards the growth of intestinal adenomas in the Apc\textsuperscript{Min+} mouse model of human familial adenomatous polyposis. In other preclinical models, curcumin downregulates the transcription of the enzyme cyclooxygenase-2 (COX-2) and decreases levels of two oxidative DNA adducts, the pyrimidopurinone adduct of deoxyguanosine (M\textsubscript{1}dG) and 8-oxo-7,8-dihydro-2\textsuperscript{0}-deoxyguanosine (8-oxo-dG). We have studied COX-2 protein expression and oxidative DNA adduct levels in intestinal adenoma tissue from Apc\textsuperscript{Min+} mice to try and differentiate between curcumin’s direct pharmacodynamic effects and indirect effects via its inhibition of adenoma growth. Mice received dietary curcumin (0.2%) for 4 or 14 weeks. COX-2 expression by 66% (\(P = 0.01\)), 8-oxo-dG levels by 24% (\(P < 0.05\)) and M\textsubscript{1}dG levels by 39% (\(P < 0.005\)). Short-term feeding did not affect total adenoma number or COX-2 expression, but decreased M\textsubscript{1}dG levels by 43% (\(P < 0.01\)). COX-2 protein levels related to adenoma size. These results demonstrate the utility of measuring these oxidative DNA adduct levels to show direct antioxidant effects of dietary curcumin. The effects of long-term dietary curcumin on COX-2 protein levels appear to reflect retardation of adenoma development.

1. Introduction

Curcumin \([1,7\text{-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione; diferuloylmethane}, the major constituent of the yellow spice turmeric derived from the rhizomes of Curcuma spp., has been shown to prevent cancer in the colon, skin, stomach, duodenum, soft palate and breast tissues of rodents following oral administration \([1–3]\). In the Apc\textsuperscript{Min+} mouse, a model of human familial adenomatous polyposis (FAP) characterised by an adenomatous polyposis coli (APC) gene defect, 0.1% and 0.2% dietary curcumin have been shown to inhibit adenoma growth, reflected by total number of adenomas and mean adenoma size \([4,5]\). Adenomas are generally regarded as precursor lesions of colorectal cancer; their histological development has been linked to carcinogenesis \([6]\).

© 2005 Elsevier Ltd. All rights reserved.
day, equating to approximately 150 mg/day of curcumin, is not associated with adverse effects in humans in certain South East Asian communities [7]. Similarly, pharmaceutical preparations of curcumin appear to be well tolerated by patients with advanced cancer at doses up to 3.6 g in the UK [8,9] and by patients with pre-invasive malignant or high risk pre-malignant conditions up to 8 g daily in Taiwan [10]. The systemic availability of curcumin is poor because of its propensity to undergo avid metabolism [11]. However, daily ingestion of 3.6 g curcumin resulted in levels in the human gastro-intestinal mucosa in the 10−3 M range [10], concentrations sufficient to exert biochemical changes in cells in vitro relevant to cancer chemoprevention [12].

Curcumin acts as an extraordinarily potent antioxidant at neutral and acidic pH [13], as reflected by its ability to decrease levels of oxidative DNA adducts, e.g., the pyrimido-purine adduct of deoxyguanosine (M1dG) in the colonic mucosa of rats after 14-day dietary administration [14]. Varying levels of DNA damage arising from the products of endogenous and exogenous oxidative stress have been measured in human tissues [15]. Oxidative DNA adducts have been implicated in early stages of carcinogenesis in a number of tissues [reviewed in 15], but their detection in pre-malignant adenoma tissue has not been reported. Two examples of such adducts are M1dG and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG). M1dG can be generated by oxidative DNA damage or by malondialdehyde (MDA), an intracellular product of lipid peroxidation [16]. M1dG adducts have been detected in human blood leukocytes, liver, pancreas and breast tissues, and they are associated with mutagenesis in mammalian cells [15]. In one clinical study, median M1dG levels in normal breast tissue from patients with breast cancer were almost threefold higher than those from women without cancer [17]. The formation of M1dG adducts in human cells has been demonstrated in the absence of MDA, via base propenals resulting from oxidative DNA damage [18]. 8-Oxo-dG, the most extensively studied adduct arising from oxidative DNA damage, is generated by reactive oxygen species, particularly the hydroxyl radical, which can bind to or abstract hydrogen atoms from DNA bases [15]. 8-Oxo-dG is associated with mutagenesis in bacterial and mammalian cells [19] and with the induction of G to T transversions in human DNA, lesions frequently seen in tumour suppressor genes such as the APC gene [20,21]. Defects in the APC gene are found in 80% of sporadic colorectal adenomas and carcinomas [21].

Biological mechanisms by which curcumin may prevent cancer are also thought to involve inhibition of activation of the transcription factor NF-xB [22], which may lead to suppression of expression of the enzyme cyclooxygenase-2 (COX-2) [12,23]. In human colon cancer, as well as adenomas of FAP and ApcMin+ adenomas, COX-2 is often induced [24–26]. Dietary administration of celecoxib, an inhibitor of COX-2 enzymatic activity, has been shown to dramatically decrease adenoma number in ApcMin+ mice [27].

In a preclinical platform of development of biomarkers of chemopreventive efficacy for intervention trials with curcumin, we investigated COX-2 expression and levels of oxidative DNA adducts in intestinal adenomas of ApcMin+ mice. The results advocate the measurement of M1dG as a biomarker of curcumin’s pharmacodynamic effects in adenoma tissue. In contrast, effects on COX-2 expression in this tissue appear to have a complex relationship with adenoma size.

2. Materials and methods

2.1. ApcMin+ mouse model

Animal experiments were carried out under project licence PPL 40/2496, granted to University of Leicester by the UK Home Office. The experimental design was vetted by the Leicester University Local Ethical Committee for Animal Experimentation and met the standards outlined in the UKCCCR guidelines [28]. A breeding colony was established from C57BL/6j Min+/– mice (Jackson Laboratory, Bar Harbor, ME), and the ApcMin+ genotype was confirmed by polymerase chain reaction [29]. All animals were randomly allocated into treatment or control groups and had access to food and water ad libitum.

The curcumin used in this study (purchased from Apin Chemicals, Abingdon, UK) was extracted from turmeric. It contained 85% curcumin and 15% desmethoxycurcumin and bisdesmethoxycurcumin, confirmed by HPLC analysis. Two experimental protocols were investigated. In the first, mice received either standard diet (AIN93G high protein, Dyets Inc., Bethlehem, PA, USA) or standard diet containing 0.1% or 0.2% w:w curcumin (n = 4 in each group) from weaning (at approximately 4 weeks of age) to week 18. In the second, mice received standard diet from weaning to week 12, after which they either remained on standard diet (control) or were switched to diet containing curcumin 0.2% (w:w, n = 4 in each group) for 4 weeks until the end of the experimental period (week 16). The age of the mice at the end of the experimental period was not identical for the two experiments since direct comparison of the parameters measured in the two independent experiments was not intended. Mice were killed by terminal anaesthesia using halothane. The gastrointestinal tract was flushed with phosphate-buffered saline (pH 7.4) and adenomas were micro-dissected under visual magnification. Normal mucosa was scraped using a blunt spatula. Histological examination ensured accurate scraping of intestinal mucosa only. All tissue samples were frozen in liquid nitrogen and stored at −80 °C.

2.2. Biomarker measurements

COX-2 levels were analysed by Western blot as previously described using a polyclonal antibody against COX-2 (Santa Cruz Biotechnology Inc., CA). Blots were stripped and re-analysed for β-tubulin using a polyclonal anti-β-tubulin antibody (Oncogene, San Diego, CA) to control for protein loading and transfer. Semi-quantitation of Western blots was performed using a GeneGenius gel documentation system. Band density was quantitated with GeneTools software (Syngene, Cambridge, UK). Extraction of genomic DNA and analysis of M1dG adduct levels by immunoslot blot were performed as previously described [8,14,30]. The detection limit for M1dG adducts was 2.5 adducts per 108 nucleotides. To avoid artificial formation of 8-oxo-dG during sample collection and DNA extraction, desferoxamine mesylate (5 mM, Sigma–Aldrich,
2.3. Measurement of COX-2 mRNA by RT-PCR

ApCMin+ mice received AIN93G diet from weaning to 18 weeks of age, after which time intestinal adenoma and mucosa tissue were collected on ice. Adenomas were sorted by size, and all tissues stored in RNALater (Qiagen, Sussex, UK) at –80 °C. Total RNA was extracted from tissues using the RNeasy mini extraction kit (Qiagen) following the manufacturer’s instructions. RNA purity was assessed by absorbance spectroscopy. Reverse transcription of RNA (2 μg) was performed using the Omniscript RT Kit (Qiagen), Oligo (dT) 12–18 Primers and RNaseOUT ribonuclease inhibitor (Invitrogen, Paisley, UK), as detailed in the manufacturer’s instructions. COX-2 cDNA transcript was amplified by polymerase chain reaction (PCR) using a COX-2 mouse primer set (Maxim Biotech Inc., CA, US). To allow normalisation of COX-2 mRNA levels between samples, levels of GAPDH mRNA were determined using a commercially available primer set (Maxim Biotech). An aliquot (1 μl) of the cDNA template was added to each PCR reaction, and reactions were carried out as described by the manufacturer. The optimum number of amplification cycles was determined for both COX-2 and GAPDH. As a control for contamination and primer degradation, all samples were run with a paired control in which water was substituted for cDNA template. Amplified PCR products were resolved through a 1.5% agarose gel containing 0.5 μg/ml ethidium bromide and viewed (UV light) using a GeneGenius gel documentation system. Band density was quantified using GeneTools software (Syngene).

2.4. Statistical evaluation

Biomarker analysis results were subjected to analysis of variance (ANOVA) and Tukey’s post hoc testing for statistical significance using SPSS software Version 11 for Windows 2000. Statistical significance was indicated by P < 0.05.

3. Results

3.1. Effect of curcumin on levels of COX-2 in ApCMin+ mouse adenomas

Mice received curcumin at 0.2% in the diet from weaning (∼300 mg/kg body weight per day), an intervention which has been previously reported to decrease adenoma number by 39% [5]. At week 18, adenoma tissue and normal mucosal samples were resected, pooled and investigated for COX-2 protein content by Western blotting. Fig. 1 shows that whereas COX-2 expression in normal mucosa was very low, intestinal adenomas contained high levels of this protein, consistent with previous reports [24–26]. In mice that had consumed curcumin throughout their lifetime, COX-2 expression in adenoma tissue was decreased compared to mice on the control diet: Semi-quantitation by densitometry of the blots suggested that COX-2 levels were 44 ± 19% of those in adenomas of control mice (n = 4, P = 0.01). An effect of curcumin could not be discerned on normal mucosa because of the undetectable COX-2 expression (Fig. 1).

In a separate experiment, the hypothesis was tested that COX-2 levels in Min adenomas were decreased after short-term administration of curcumin. ApCMin+ mice received curcumin (0.2%) for 4 weeks from week 12. This treatment did not influence the total number of adenomas counted at 16 weeks of age: 35.9 ± 6.8 total adenomas in curcumin-fed mice compared to 34.5 ± 6.8 in control animals (n = 8). COX-2 protein levels in intestinal adenomas from mice exposed to curcumin were not lower than those in mice on control diet (result not shown).

3.2. Dependency of COX-2 expression on stage of adenoma development

COX-2 expression in murine adenomas has previously been shown to depend on adenoma size [32,33]. We therefore
explored the relationship between COX-2 protein levels and adenoma size in the mice used in the study described here. To that end, small intestinal adenomas were excised from control Apc\textsuperscript{Min+} mice at 12 or 16 weeks of age and separated into small (<1 mm), medium (1–3 mm) and large tumours (>3 mm) prior to analysis for COX-2 protein expression. Consistent with previous results [32,33], COX-2 protein levels varied with tumour size, with the highest levels observed in the subset of the largest polyps (Fig. 2), although the differences did not reach significance. Furthermore, the question was addressed whether the developmental regulation of COX-2 expression is the corollary of altered COX-2 gene transcription. Messenger RNA extracted from intestinal adenomas of differential size was subjected to RT-PCR and transcript levels were corrected by comparison to GAPDH transcription. Fig. 3 shows that COX-2 transcript levels were low in mucosa and high in adenomas. There was no difference in transcript levels between small, medium-sized and large adenomas.

Taken together with the results from the curcumin feeding experiments, these observations suggest that: (1) COX-2 protein expression in Apc\textsuperscript{Min+} mice is upregulated at a transcriptional level from early stages of adenoma development; (2) intervention with dietary curcumin from week 12 onwards does not affect COX-2 levels, nor total adenoma number; and (3) lifetime intervention with curcumin at a dose which decreases total adenoma number attenuates COX-2 levels measured at the end of the experiment. It is therefore likely that the observed decrease in adenomatus COX-2 levels in mice fed with curcumin represents an indirect effect, i.e., the consequence of curcumin-induced retardation of adenoma growth.

### 3.3. Effect of curcumin on levels of oxidative DNA adducts in Apc\textsuperscript{Min+} mouse adenomas

Levels of M\textsubscript{1}dG adduct were determined by immunoslot blot analysis in murine intestinal adenomas and normal mucosa. M\textsubscript{1}dG levels in adenomas from mice on control diet were threefold higher than those in mucosa (12.8 ± 2.9 vs. 4.0 ± 1.5 adducts per 10\textsuperscript{7} nucleotides, respectively, \(P < 0.01, n = 4–6\). In mice that received curcumin (0.2%) for their lifetime, M\textsubscript{1}dG adduct levels in adenomas were 39% below normal mucosa (10.0 ± 1.9 vs. 4.0 ± 1.5 adducts per 10\textsuperscript{7} nucleotides, respectively, \(P < 0.01\).

---

**Fig. 2** – COX-2 protein levels in Apc\textsuperscript{Min+} mouse intestinal mucosa and adenomas of size <1 mm, 1–3 mm and >3 mm in week 12 (A), or week 16 (C), (A) shows a Western blot, representative of week 12, (B) and (C) show values obtained from semi-quantitation of densitometry of blots from adenomas from three separate mice on week 12 (B) or week 16 (C) corrected for protein loading using \(\beta\)-actin expression. Values show mean ± SD (\(n = 3\)). M, mucosa, a.u., arbitrary units.

**Fig. 3** – COX-2 mRNA levels in Apc\textsuperscript{Min+} mouse intestinal mucosa and adenomas of size <1 mm, 1–3 mm and >3 mm from 16-week old mice. COX-2 mRNA levels were determined semi-quantitatively by reverse transcription-PCR, (A) shows a representative fluorograph of tissue from one mouse, (B) shows semi-quantitation by densitometry of fluorographs from samples of four separate mice, normalised to mRNA levels of the housekeeping gene GAPDH. Values show mean ± SD. Star indicates mucosal COX-2 mRNA levels are significantly lower than those in adenomas of any size group (\(P < 0.01\)). M, normal mucosa, a.u., arbitrary units.
those in animals on control diet (Table 1). The theory that the decrease in M1dG adduct levels represented an antioxidant pharmacodynamic effect was substantiated by measurement of a separate oxidative DNA adduct, 8-oxo-dG. Curcumin (0.2%) abolished the excess of 8-oxo-dG adduct seen in adenomas of untreated mice over those in mucosa, in that adduct number per 10^6 nucleotides in adenomas of control mice was 50 ± 28 and in curcumin-treated mice 38 ± 9 (P < 0.05, n = 4), whilst the respective mucosal levels were 38 ± 19 and 35 ± 16.

Lifetime administration of curcumin at 0.1% dietary concentration (~150 mg/kg bw per day), which failed to affect ApcMin+ adenoma number in previous experiments [5], decreased adenomatous M1dG adduct levels, by 43% (Table 1). Similarly, reduction in M1dG levels was observed in adenomas of mice that received curcumin (0.2%) for only 4 weeks from week 12, an intervention which did not affect total adenoma number (vide supra). Adenoma tissue M1dG adduct levels in week 12, an intervention which did not affect total adenoma number per 10^6 nucleotides in adenomas of control mice that received curcumin (0.2%) for only 4 weeks from 4 weeks of age and (B) 28 days dietary intervention, started in week 12 with 0.2% curcumin

<table>
<thead>
<tr>
<th>Intervention group</th>
<th>M1dG levels (adducts per 10^6 nucleotides)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>12.8 ± 2.9</td>
</tr>
<tr>
<td>Curcumin 0.1%</td>
<td>7.1 ± 2.1**</td>
</tr>
<tr>
<td>Curcumin 0.2%</td>
<td>7.6 ± 2.9**</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>13.4 ± 4.9</td>
</tr>
<tr>
<td>Curcumin 0.2%</td>
<td>5.1 ± 2.2**</td>
</tr>
</tbody>
</table>

a Control mice received diet alone. Adenoma tissue from each animal was pooled, DNA extracted and M1dG adducts assessed by immunoslotblot.
b Values represent mean ± SD (n = 4–6). Statistical significant differences compared to control mice are indicated by *P < 0.01 or **P < 0.005 (by ANOVA).

Interesting discrepancies exist when one compares the COX-2 protein expression in ApcMin+ mouse adenomas described here with the previously reported size-dependency of COX-2 expression in adenomas of Apc^716+ mice assessed by immunohistochemistry [32,33]. These authors have suggested that COX-2 expression increases with adenoma size, but that polyps smaller than 1 mm showed “little COX-2 expression”. Consistent with these reports, large adenomas in ApcMin+ mice in our study expressed the highest COX-2 levels. However, inconsistent with the previous immunohistochemical reports, COX-2 protein levels in our experiments were upregulated over levels in adjacent non-malignant tissue from an early stage of adenoma development (i.e., <1 mm in size). This discrepancy may be explicable by differences in analytical technique. Takeda and Seno and colleagues studied individual adenomas by immunohistochemistry [32,33]. Instead, we pooled tissue from several mice in order to obtain sufficient protein for reproducible analysis by Western blotting. Differences between individual similarly-sized adenomas were therefore averaged out in the data presented in Fig. 2. Whilst the methodology described here permits only gross inferences to be drawn regarding COX-2 protein expression changes in relation to adenoma size, it demonstrates that COX-2 protein expression is upregulated from the earliest discernible stages of adenoma development. Intervention after this time with dietary curcumin does not appear to impact significantly on COX-2 expression or total adenoma number. On the basis of these results, we suggest that chemoprevention strategies using curcumin should be implemented before or during the earliest stages of adenoma development to demonstrate effects on adenoma number as a primary endpoint or on COX-2 protein levels as a surrogate endpoint.

According to the data presented above, oxidative DNA adduct levels appear to reflect direct anti-oxidant effects of curcumin, which seem independent of its effects on adenoma number. Particularly noteworthy is the finding that levels of M1dG and 8-oxo-dG adducts were elevated in ApcMin+ adenoma tissue compared to surrounding mucosa. Adduct levels appeared exquisitely sensitive to curcumin exposure, irrespective of whether exposure was for the lifetime of the mice or only short-term. A dose–response relationship was not demonstrated for the two dose levels at the single time-point studied. Further studies will be designed to explore this relationship as part of biomarker validation. The relevance
The results from the mouse model used here do not advocate measurement of M\(_1\)dG adduct levels in normal colorectal mucosa. Although the differences in M\(_1\)dG adduct levels in normal colorectal mucosa and malignant colorectal tissue are significant, the measurement of M\(_1\)dG adduct levels in normal colorectal mucosa might be useful in clinical trials. However, the results from the recent pilot study of oral curcumin for 7 days prior to surgery in patients with resectable colorectal cancer [9] suggest that curcumin intervention should occur before or during the earliest stages of adenoma development.

What is the potential corollary of the results described here for the clinical development of curcumin in view of the robust ability of curcumin to delay malignancies in murine models of intestinal carcinogenesis [1,4,5]? Since our results suggest that curcumin intervention should occur before or during the earliest stages of adenoma development in the colon, it is conceivable that such analysis is useful in humans. M\(_1\)dG adduct levels in normal colorectal mucosa have been compared between individuals with and without adenomas [37]: Individuals with macroscopic adenomas showed a trend towards higher M\(_1\)dG levels in normal colorectal mucosa, although this difference was not statistically significant. Consumption of legumes, nuts, wholemeal bread, cereals, fruits, vegetables, salads and raw tomatoes decreased M\(_1\)dG levels in normal mucosa. The suspicion that M\(_1\)dG measurement might be useful in clinical trials has also been fuelled by the results of a recent pilot study of oral curcumin for 7 days prior to surgery in patients with resectable colorectal cancer [9]. In this trial, M\(_1\)dG adduct levels were 2.5-fold higher in malignant colorectal tissue than normal colorectal mucosa. Moreover, patients who consumed curcumin capsules (3.6 g daily) displayed significantly lower M\(_1\)dG adduct levels in malignant tissue than those observed in biopsy tissue obtained from the same tumour before the 7-day intervention.

References

17. Wang MY, Dhillon K, Hittleman WN, et al. Lipid peroxidation induced putative malondialdehyde-DNA adducts in human...


