Management of the Irritable Bowel Syndrome

MICHAEL CAMILLERI
Enteric Neuroscience Program, Mayo Clinic and Mayo Foundation, Rochester, Minnesota

Irritable bowel syndrome (IBS) is the most common disorder diagnosed by gastroenterologists and one of the more common ones encountered in general practice. The overall prevalence rate is similar (approximately 10%) in most industrialized countries; the illness has a large economic impact on health care use and indirect costs, chiefly through absenteeism. IBS is a biopsychosocial disorder in which 3 major mechanisms interact: psychosocial factors, altered motility, and/or heightened sensory function of the intestine. Subtle inflammatory changes suggest a role for inflammation, especially after infectious enteritis, but this has not yet resulted in changes in the approach to patient treatment. Treatment of patients is based on positive diagnosis of the symptom complex, limited exclusion of underlying organic disease, and institution of a therapeutic trial. If patient symptoms are intractable, further investigations are needed to exclude specific motility or other disorders. Symptoms fluctuate over time; treatment is often restricted to times when patients experience symptoms. Symptomatic treatment includes supplementing fiber to achieve a total intake of up to 30 g in those with constipation, those taking loperamide or other opioids for diarrhea, and those taking low-dose antidepressants or infrequently using antispasmodics for pain. Older conventional therapies do not address pain in IBS. Behavioral psychotherapy and hypnotherapy are also being evaluated. Novel approaches include alosetron; a 5-HT3 antagonist, tegaserod, a partial 5-HT4 agonist, κ-opioid agonists, and neurokinin antagonists to address the remaining challenging symptoms of pain, constipation, and bloating. Understanding the brain–gut axis is key to the eventual development of effective therapies for IBS.

In this article on the management of irritable bowel syndrome (IBS), the focus is on (1) the definitions, epidemiology, and pathophysiology as a means of understanding strategies for optimal management; (2) the natural history and “safety” of the disorder that justifies a conservative and reassuring approach to patients; and (3) consideration of older (conventional) and newer treatments of IBS.

IBS Overview: Definitions, Epidemiology, Pathophysiology

Irritable bowel syndrome (IBS) is defined as “a functional bowel disorder in which abdominal pain is associated with defecation or a change in bowel habit, with features of disordered defecation and distension.” The consensus definition and criteria for IBS have been formalized in the “Rome criteria,” which are based on Manning criteria (Table 1). The Rome criteria have come to be accepted as the state-of-the-art criteria for research studies; they have recently been refined and simplified for IBS to focus on the essential elements of abdominal pain and alteration of bowel habits. However, validation of these criteria has been hampered by the lack of any biologic marker for IBS. The specificity of the symptoms alone is relatively poor. Specificity is enhanced by the inclusion of limited tests to exclude organic disease. Thus, IBS is a disorder that can be diagnosed positively on the basis of a series of symptom criteria and limited evaluation to exclude organic disease.

The prevalence data from questionnaire studies range from the 2.9% estimate from 6 U.S. surveys of the prevalence of the diagnosis of IBS to the prevalence of symptoms in a random sample of the population, which may reach up to 20% depending on the criteria used. The precise incidence of IBS is unclear, but it has been estimated at almost 1% per year.

Symptom subgroups based on the predominant bowel habit (i.e., constipation-predominant IBS, diarrhea-predominant IBS, and IBS with alternating bowel movements) have equal prevalence rates (5.2 per 100) in epidemiologic studies in Olmsted County, Minnesota, although clinical samples show a different distribution, possibly reflecting regional research expertise or interest. The gender ratio in these subgroups is similar except in constipation-predominant IBS, which is more common in women. The female preponderance is more apparent

Abbreviations used in this paper: IBS, irritable bowel syndrome; SSRI, selective serotonin reuptake inhibitor.
Prevalence of IBS is lower in the elderly. In Olmsted County, Minnesota, the prevalence of IBS among people aged 65–93 years was 10.9%, compared with 17% in those aged 30–64 years. Traditionally, IBS is not diagnosed in those patients presenting with the symptom complex for the first time after the age of 60 years.

Table 1. Criteria for IBS

<table>
<thead>
<tr>
<th>Manning criteria</th>
<th>Rome II criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain relieved by defecation</td>
<td>At least 12 weeks or more, which need not be consecutive, in the previous 12 months of abdominal pain or discomfort that has 2 of 3 features:</td>
</tr>
<tr>
<td>More frequent stools at the onset to pain</td>
<td>Relief with defecation</td>
</tr>
<tr>
<td>Looser stools at the onset of pain</td>
<td>Onset associated with a change in the frequency of stool</td>
</tr>
<tr>
<td>Visible abdominal distention</td>
<td>Onset associated with a change in form (appearance) of stool</td>
</tr>
<tr>
<td>Passage of mucus</td>
<td>Pain relieved by defecation</td>
</tr>
<tr>
<td>Sensation of incomplete evacuation</td>
<td>In whom functional, painless diarrhea may be associated with postprandial urgency, borborygmi, and a sense of incomplete rectal evacuation.16 Because of the absence of abdominal pain, these patients would not be considered to have IBS on the basis of the Rome II criteria, contrary to the experience and practice of many clinicians, as documented in the literature almost 40 years ago.16</td>
</tr>
</tbody>
</table>

Data from Manning et al. and Drossman et al.

Although the Rome II criteria for IBS are quite robust, they are still not comprehensive and do not encompass some clinical patterns of IBS that are recognized by clinicians and are amenable to newer therapies. First, these criteria exclude subgroups based on predominant bowel dysfunction.

Second, the criteria do not address the postprandial exacerbation of symptoms. Symptom-based and experimental studies, typically in relatively small samples of patients, suggest that postprandial symptoms and dysfunctions may be important, but this feature has not yet been included in Rome II IBS criteria. Urgency and abdominal pain or diarrhea are frequently encountered in the postprandial period, and a subgroup of patients has a prominent tonic and phasic response to feeding. This can be assessed by specific questions in the clinic and has clear physiologic correlates (increased postprandial propagated contractions in diarrhea-predominant IBS or reduction of colonic contractions in constipation-predominant IBS), objectively shown by colonic manometry. Recent studies confirm the association with food “sensitivity” or “intolerance,” which may merely reflect exacerbation of symptoms by food. In fact, patients with diarrhea-predominant IBS have higher serotomeric responses to a standard meal, suggesting that serotonin might mediate these symptoms. Ragnarsson and Bodemar found that almost 50% of patients with IBS reported worsening of pain postprandially. Other studies with thorough documentation of meal-related symptoms will be needed in the future.

Third, the Rome II criteria do not encompass patients in whom functional, painless diarrhea may be associated with postprandial urgency, borborygmi, and a sense of incomplete rectal evacuation. Because of the absence of abdominal pain, these patients would not be considered to have IBS on the basis of the Rome II criteria, contrary to the experience and practice of many clinicians, as documented in the literature almost 40 years ago.

Impact of IBS

It is estimated that only 10%–25% of patients with IBS seek medical care; however, the illness has an enormous economic impact. In the United States alone, the economic impact is estimated at $25 billion annually (Table 2) through direct costs of health care use and indirect costs of absenteeism from work. In countries with socialized medicine, direct charges are lower, but this expenditure may still account for 0.5% of health care budgets.

Patients with IBS undergo more surgical procedures, including hysterectomy, cystoscopy, and appendectomy. IBS accounts for 2.4–3.5 million physician visits in the United States annually, making it the most common diagnosis in gastroenterologists’ practice (approximately 28% of all patients) and accounting for 12% of primary care visits. Annually, there are 2.2 million medication prescriptions for IBS patients in the United States. Patients with IBS have 3 times more absenteeism from work and report reduced quality of life.

Table 2. Epidemiology and Cost Statistics of IBS

| Prevalence of IBS varies between 5% and 25% |
| Similar prevalence in several countries and ethnic groups (e.g., black, hispanic, and white U.S. population) |
| Constipation-predominant IBS is more common in women |
| Female predominance (3–4 F:1 M) in those seeking health care; approximately equal M:F ratio among community nonpresenters with IBS symptoms identified by surveys (except constipation IBS, in which F > M) |
| 10%–25% of IBS patients seek medical care |
| IBS accounts for 2.4–3.5 million physician visits and 2.2 million medication prescriptions in the United States annually |
| 3-Fold absenteeism from work in IBS, roughly equivalent to the common cold |
| Annual resource impact of IBS in the United States estimated at $25 billion; two thirds for indirect costs |

Data reviewed by Camilleri and Williams.
Overview of Mechanisms as a Basis for Therapy

Symptoms in IBS have a physiologic basis, but there is no single physiologic mechanism responsible for symptoms of IBS. Table 3 summarizes the pathophysiologic mechanisms that appear to contribute to IBS. These individual mechanisms are not mutually exclusive. IBS is considered a biopsychosocial disorder resulting from a combination of 3 interacting mechanisms: psychosocial factors, altered motility (Table 4) and transit, which may reflect severity of bowel dysfunction, and increased sensitivity (Table 5) of the intestine or colon. Preliminary data suggest a genetic contribution to functional bowel disease. Vagal nerve dysfunction and altered somatosensory and motor dysfunction in patients with functional bowel disorders that requires further validation. Gastrointestinal hypersensitivity and anorectal dysfunction have been extensively studied and are so frequently associated with the syndrome 51–55 that they are reasonable targets for therapy. It has been hypothesized that altered peripheral functioning of visceral afferents (recruitment of silent nociceptors, increased excitability of dorsal horn neurons) and the central processing of afferent information are important in the altered somatosensory and motor dysfunction in patients with functional bowel disease. Vagal nerve dysfunction and abnormal sympathetic adrenergic function have been demonstrated in subgroups of patients with constipation- and diarrhea-predominant IBS, respectively. 38,59

Recently, much attention has been focused on possible persisting neuroimmune interactions after infectious gastroenteritis, which might result in continuing sensorimotor dysfunction. 60 However, the role of infection in IBS is still controversial. Infectious diarrhea precedes the onset of IBS symptoms in 7%–30% of patients in different series. Certain toxins seem more likely to be associated with long-term symptoms in patients with prior Campylobacter enteritis. It is not clear whether a previous infectious episode could induce a physiologic response, causing persistent symptoms, even in the absence of residual demonstrable inflammation of the gut. Some have hypothesized that microscopic inflammatory changes such as infiltration of the enteric nervous system contribute to the development of IBS. Gwee et al. have shown that about a quarter of patients with infectious diarrhea IBS continue to experience symptoms after 3 months. However, these patients were admitted to their local hospital, suggesting they suffered a severe form of diarrhea, raising questions about the generalizability of the observation. In fact, the community diarrhea-based study in Nottingham, England, suggests that fewer than 10% of patients with acute diarrhea went on to develop

Table 3. Pathophysiology of IBS

A biopsychosocial disorder
- Altered motility and enhanced visceral perception
- Normal bowel compliance
- Abnormal motility
- Idiopathic constipation and normal anorectal function
- High thresholds for somatic pain stimuli
- Psychologic distress
- Psychologic hypersensitivity
- Irritant bowel syndrome
- Sudden onset of IBS symptoms
- Increased visceral perception on rectosigmoid, ileal, and anorectal balloon distention
- Normal bowel compliance

Table 4. Alterations in Bowel Motility in IBS

Psychologic and physical stress increase colonic contractions in experimental studies modeling IBS
- Diarrhea-predominant IBS
 - Prominent colonic response to feeding: increased postprandial colonic contractions
 - Fast colonic and propagated contractions increased with diarrhea and decreased in constipation-predominant IBS
 - Accelerated whole-gut transit; faster ascending and transverse colon emptying is positively correlated with stool weight
- Constipation-predominant IBS
 - Decreased number of fast colonic and propagated contractions in constipation-predominant IBS
 - Idiopathic constipation and normal anorectal and pelvic floor function: delay in whole-gut transit, and rate of ascending and transverse colon emptying
 - Normal colonic compliance and tone are normal, although few reports suggest minor abnormalities in constipation of unclear clinical significance
- Pain-predominant IBS
 - “Clustered” contractions in the jejunum and ileal propagated giant contractions during episodes of abdominal colic are not pathognomonic for IBS
 - Sensory abnormalities accompany postprandial motor dysfunctions

Table 5. Enhanced Visceral Perception in IBS

Diarrhea-predominant IBS
- Lower thresholds for sensation of gas, stool, discomfort, and urgency by progressive rectal balloon distention, accompanied by excessive reflex contractile activity in the rectum
- Constipation-predominant IBS
- Discomfort at greater distention volumes (reduced sensitivity) than in health; others report rectal or sigmoid hypersensitivity
- Normal or increased thresholds for somatic pain stimuli
- Pain-predominant IBS
- Increased visceral perception on rectosigmoid, ileal, and anorectal balloon distention
- Normal bowel compliance

*Interaction between different mechanisms may occur in individual patients.
IBS. From the study of Gwee et al., it appears that the “mind” plays a greater role than “matter” because life event stress and hypochondriasis are predictive factors in the persistence of IBS. In contrast, physiologic parameters such as whole-gut transit time and sensory thresholds are not different in patients with and without IBS symptoms 3 months after an episode of “infectious” diarrhea.

Some patients with IBS also have carbohydrate intolerance, which may contribute to the symptoms of IBS; intolerance of sugars is partly determined by the ethnicity of the patient. Thus, lactose intolerance has a higher prevalence among Hispanic and black patients, whereas fructose and sorbitol intolerance are more prevalent among people of Northern European extraction. The clinical effects of lactose intolerance are also dependent on the total carbohydrate load because exposure to the equivalent of an 8-ounce glass of milk per day does not seem to cause symptoms. Gas clearance as a result of maldigestion in the small intestine and subsequent metabolism in the colon accounts for bloating; formation of osmotically active metabolites leads to diarrhea. Measurements of intestinal gas have not always correlated with symptoms.

Experimental data suggest that food allergens may also be important in IBS. One clinical trial showed that symptoms in 40% of patients with IBS persistently improved with dietary exclusions. The role of dietary exclusion is still controversial, although there is evidence that the greater rate (although not the quantity) of gas excretion in IBS patients can be reduced by exclusion diets, and this change parallels improvement in symptoms.

The ileum of patients with IBS is excessively sensitive to the secretory effects of perfused bile acids. Recent studies also emphasize the interaction between gas retention and other cofactors, particularly in patients with constipation-predominant IBS. This led to the experimental use of colonic prokinetics as a means of enhancing gas clearance, which showed that gas clearance was increased. However, this was associated with exacerbation of abdominal pain, a well-known side effect of the anticholinesterase neostigmine, and other approaches that do not increase pain are needed.

Stress and emotions affect gastrointestinal function and cause symptoms to a greater degree in IBS patients than in healthy controls. Psychologic symptoms that are more common in patients with IBS include somatization, anxiety, hostility, phobia, and paranoia. Identification of this comorbidity and somatization are key to optimizing patient treatment. Patients with IBS seen in medical clinics have elevated scales of depression, anxiety, somatization, and neuroticism. At the time of presentation, almost half of the IBS patients have one or more of these symptoms. Because psychosocial symptoms modulate experience of somatic symptoms, they contribute to the greater illness behavior, increased physician consultations, and reduced coping capability that are so common among IBS patients. Life event stressors and hypochondriasis are important determinants of patients with postinfectious diarrhea who develop the full picture of IBS at 3 months.

The role of physical and sexual abuse in the development of the psychosocial factors manifested by patients with functional gastrointestinal disease is controversial. If identified, abuse requires specific and expert care.

Thus, other therapies focus on the psychotherapeutic angle. Until relatively recently, attempts to develop effective therapies were hampered by poor trial design. The psychopathology or psychologic distress manifested particularly in patients presenting to the clinic and in those with a history of abuse emphasize the importance of the holistic approach to the patient.

Natural History of IBS: A “Safe Diagnosis” and the Importance of Reassurance

IBS is a chronic disease whose course is extremely variable in the general population. Although functional gastrointestinal symptoms are common in middle-aged persons, the overall prevalence in a community sample seems relatively stable over 12–20 months. There is a substantial degree of “turnover” because many people’s symptoms fluctuate over time, and they therefore move in and out of the IBS cohort. IBS is a “safe” diagnosis. Patients followed up with such a diagnosis seldom turn out to suffer from serious organic disease, and the time-honored clinical strategy to reassure the patient that the diagnosis is benign without significant risk of missing an organic disease is well justified.

Fluctuation of symptoms often results in seeking of further health care. Repetitive investigations serve merely to reinforce the illness behavior. On the other hand, it is equally important that physicians not attribute to IBS those symptoms that do not fit the usual syndrome in the individual patient or symptoms that do not conform with the broader characteristics of the symptom complex embodied in the Manning or Rome criteria. The development of rectal bleeding, anemia, and a high erythrocyte sedimentation rate were significant negative predictive factors for IBS in the study of Kruijssen.
Diagnostic Strategy in IBS Patients

General Principles

The diagnosis of IBS is based on the identification of symptoms consistent with the syndrome and the exclusion of organic diseases that have similar clinical presentations.1–8 A conservative management approach includes identification through symptom-based criteria (e.g., Manning4 or Rome II criteria) and therapeutic trials. There are now relatively inexpensive diagnostic tests that aid in identification of the underlying mechanism (Figure 1) in patients who do not respond to empiric trials; by definition, tests should follow the empiric trial in this relatively benign syndrome. Recent reviews, endorsed by the Practice Committee of the American Gastroenterological Association,8 have suggested strategies for diagnosis and management of IBS.

The first step is a careful assessment of the patient’s symptoms. Manning or Rome criteria can be used in a proactive, positive manner to raise the clinical suspicion of IBS. The absence of rectal bleeding is helpful in excluding organic disease. A thorough physical examination and a limited series of initial investigations are needed to exclude organic structural, metabolic, or infectious diseases.4–7 These include hematology and chemistry tests; erythrocyte sedimentation rate; stool examination for occult blood, ova, and parasites (in those with diarrhea predominance); flexible sigmoidoscopy; and, in those over 40 years of age or with a family history of colon polyps or cancer, a complete colonic evaluation. Formal studies have assessed the role of a more specialized investigation. Ultrasonography or computed tomography of the abdomen and pelvis31,92,93 and rectal biopsy94 provide little incremental value to the simpler work-up proposed for IBS. However, rectal biopsy may be appropriate to exclude lymphocytic/microscopic or collagenous colitis in some patients with painless diarrhea. The controversy of flexible sigmoidoscopy versus colonoscopy as a screening test for organic disease is still unresolved; one approach is to use American Cancer Society or World Health Organization criteria95–97 to select the endoscopic procedure dictated for screening for colon cancer in patients with suspected IBS.

A careful search for psychosocial factors, stress, and possibly physical and sexual abuse will identify issues that may require specific attention. Establishing an effective physician–patient relationship and sizing up the patient’s agenda are crucial to effective treatment of the patient.88 Figure 1 summarizes the approach to patient care in patients with IBS.

Pelvic floor dysfunction is a discrete disorder and may present with symptoms consistent with constipation-predominant IBS: constipation, sense of incomplete evacuation, and secondary abdominal pain. These symptoms result from failed coordination of functions that normally result in rectal evacuation. A careful history, physical examination, and simple clinical or radiologic tests can identify these patients, and biofeedback/physical relaxation leads to significant improvement, even cure; no pharmacologic or surgical therapy is useful in this condition. Proper identification and treatment of pelvic floor dysfunction is a key to at least partial relief in patients with coexisting constipation-predominant IBS.98

A careful review of the results of the screening tests helps reassure the patient. If any of the test results are
abnormal, further specific investigation or treatment may be necessary. When organic structural or biochemical disorders are excluded, it is useful to reassure the patient of the significance of these normal findings.

A therapeutic trial is part of the diagnostic process (Table 6). Typically, a therapeutic trial should be pursued for at least 4 weeks. There is also evidence that one of the medications in a therapeutic class may be more effective in an individual, and there may be some advantage to sequential trials of different drugs in the same group. This is particularly relevant in trials of antidepressants, as demonstrated by Clouse et al. This clinical observation reflects partly the repetitive response to placebo in IBS. Alternatively, it may reflect the different pharmacologic effects (serotonergic, adrenergic, anticholinergic) of the different antidepressant drugs and the possibility that specific neurochemical modulation may be necessary. When organic structural or biochemical disorders are excluded, it is useful to reassure the patient of the significance of these normal findings.

Table 6. Initial Treatment: The Therapeutic Trial

<table>
<thead>
<tr>
<th>Condition</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassurance</td>
<td>Doctor-patient relationship</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>Antidiarrheal agents (
2 mg as needed, up to 4/day)</td>
</tr>
<tr>
<td>Diarrhea and pain</td>
<td>Alosetron (1 mg 2× daily) approved for women with IBS pain and diarrhea</td>
</tr>
<tr>
<td></td>
<td>Tricyclic antidepressants (
50 mg 3× daily, or amitriptyline, 10–25 mg 2× daily)</td>
</tr>
<tr>
<td>Constipation</td>
<td>Dietary fiber supplementation (20 g/day)</td>
</tr>
<tr>
<td></td>
<td>Osmotic laxatives (
lactulose, polyethylene glycol)</td>
</tr>
<tr>
<td>Pain</td>
<td>Antispasmodics for pain on an as-needed basis; effectiveness unclear</td>
</tr>
</tbody>
</table>

Additional diagnostic tests (Figure 1) may be required if the therapeutic trial fails. The most appropriate test will depend on the predominant symptom in the individual patient and the previous therapeutic trials undertaken. In patients with predominant constipation, colonic transit and tests of the stool evacuation process are indicated when a trial of fiber and osmotic laxatives fails. In patients with predominant diarrhea or pain-gas-bloat symptoms, a more detailed dietary history may identify factors that may be aggravating or even causing those symptoms. Among patients with predominant diarrhea, lactose, fructose, or sorbitol intake may induce this symptom. Therefore, a lactose-hydrogen breath test should be performed, or a lactose-exclusion diet should be included in the therapeutic trial. Among patients with predominant pain-gas-bloat, a plain abdominal radiograph during an acute episode of pain provides some reassurance that there is no mechanical obstruction. Thereafter, a therapeutic trial with a smooth muscle relaxant (discussed below) is reasonable. The effectiveness of smooth muscle relaxants in the treatment of IBS is controversial.

Conventional Therapies for IBS

Effective management requires an effective physician-patient relationship and attention to the art of healing in addition to the science of modern medicine. Education of physicians, surgeons, gynecologists, and patients regarding IBS and its management is essential to reduce direct costs; new insights in pathophysiology and mechanisms, novel pharmacotherapy (Table 7), and teaching patient skills to manage the syndrome are likely to reduce indirect or societal costs and may have an impact on intangible costs.

Role of Fiber in Treatment of IBS

In patients with constipation-predominant IBS, fiber accelerates colonic or oroanal transit; this acceleration is associated with increased stool weight and percentage of unformed stools. As a group, patients with constipation-predominant IBS do not consume less dietary fiber than control subjects. It is often postulated that fiber may decrease intracolonic pressure and thereby

Table 7. Novel IBS Therapy Based on Pathophysiology and Pharmacodynamics

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>5-HT3 antagonists (e.g., alosetron): retard small bowel and colonic transit</td>
</tr>
<tr>
<td></td>
<td>Anticholinergics, selective M3 type: antispasmodic with antidiarheal potential</td>
</tr>
<tr>
<td></td>
<td>CCK antagonist: loperamide does not inhibit colonic response to food ingestion in humans</td>
</tr>
<tr>
<td>Constipation</td>
<td>5-HT4 agonists (e.g., tegaserod and prucalopride): accelerate small bowel and colonic transit</td>
</tr>
<tr>
<td>Pain</td>
<td>α2-Adrenergic agonist (e.g., clonidine): reduces tone, increases compliance, decreases pain sensation during distention in health</td>
</tr>
<tr>
<td></td>
<td>ω-Opioid agonist (e.g., fedotozine): increases threshold for distention-induced pain in IBS</td>
</tr>
<tr>
<td></td>
<td>5-HT: 5-HT3 agonist: relaxes colonic tone, reduces sensation</td>
</tr>
<tr>
<td></td>
<td>5-HT3 antagonist: reduces colonic tonic response to feeding, colonic compliance, and sensation of volume distentions</td>
</tr>
<tr>
<td></td>
<td>5-HT2 antagonist: inhibits colonic sensation in experimental models</td>
</tr>
<tr>
<td>Neurokinin antagonists: reduce visceral sensation; motor actions in colon depend on receptor subtype in experimental models</td>
<td></td>
</tr>
</tbody>
</table>
reduce pain because it is recognized that wall tension is one of the factors that contributes to visceral pain.102–104 Fiber reduces bile salt concentrations in the colon, and it has been speculated that this indirectly reduces colonic contractile activity.105 However, symptom relief was not associated with changes in rectosigmoid motility.106

Fiber alleviates pain in children with idiopathic chronic abdominal pain.107 However, the mechanism of this beneficial effect is unclear, and any perceived benefit may be secondary to the relief of constipation. When formally tested, fiber supplementation did not reduce phasic contractile activity in IBS patients,106 and the effects of fiber supplementation on colonic tone, sensation, and compliance in IBS have not been evaluated adequately. There have been few randomized or mechanistic studies of fiber in patients with IBS. In a crossover comparison of 30 g/day bran or placebo bran in 18 patients, bran increased stool weight and shortened intestinal transit time, but symptoms were not assessed.108 Another crossover study in 14 patients used 15.6 g/day of fiber versus 2.7 g/day (placebo group) and identified significant effects with the first treatment, either bran or placebo,109 a frequent finding in crossover studies of a disorder with high placebo responses. A study from India identified correlations between dose of ispaghula (10–30 g/day) and symptoms and stool weight, but not with whole-gut transit time.110 The authors also reported a significant effect of fiber on symptoms, but there was no placebo arm, and 4 of 14 patients were not included in the final analysis because of drop-out. An 80-patient crossover study of bran versus placebo identified no difference in overall responses and worse “wind-related” symptoms in the bran-treated group.111 Francis and Whorwell112 reported exacerbation of symptoms at the start of treatment that persisted long-term, particularly with citrus fruits.

In practice, many patients complain of bloating with higher doses of fiber. Bran is reported to be no better than placebo in relief of overall IBS symptoms113 and may be worse than a normal diet112 for some symptoms of IBS caused by intraluminal distention113 by bowel gas produced by bacterial fermentation of fiber.114,115 Fiber may induce bloating by increasing residue loading and bacterial fermentation without accelerating the onward movement of the increased residue.116

Notwithstanding these limitations, there is a significant improvement in constipation if sufficient quantities of fiber (20–30 g/day) are consumed.100,117 The uncertain benefits of fiber are the basis for the common practice of starting with a low dose, increasing gradually, and abandoning high levels of supplementation (e.g., >30 g/day) if patients experience worsening of symptoms.112 Thus, in summary, whereas fiber has a role in treating constipation, its value in the relief of abdominal pain and diarrhea associated with IBS is controversial. The efficacy of fiber in the long term is also questionable because it resulted in equivocal benefit in a group of 14 patients with IBS who were followed up for up to 3 years.118

Loperamide and Antidiarrheal Agents in IBS

Diarrhea-predominant IBS is associated with acceleration of small bowel and proximal colonic transit and responds to opioids.119 Most prefer to use loperamide over diphenoxylate, which contains atropine and may induce adverse effects that may be worrisome in the elderly, e.g., bladder dysfunction, glaucoma, and tachycardia. Loperamide (2–4 mg, up to 4 times daily), a synthetic opioid, decreases intestinal transit, enhances intestinal water and ion absorption, and increases anal sphincter tone at rest.119 These physiologic actions seem to explain the improvement in diarrhea, urgency, and fecal soiling observed in patients with IBS.119 The effect on resting anal tone120 may help reduce fecal soiling at nighttime, when the internal anal sphincter function is the predominant mechanism of continence at a time when it is enhanced by the voluntary contraction of the external anal sphincter. Because it does not traverse the blood–brain barrier, loperamide is generally preferred to other opiates such as diphenoxylate, codeine, or other narcotics for treating patients with IBS who have predominant diarrhea and/or incontinence. Clinically, loperamide can also be used to reduce postprandial urgency associated with a prominent colonic response to feeding or as a means of improving control at times of anticipated stress or other colonic stimuli (e.g., exercise, social gatherings). One of the drawbacks of opioids is the tendency to induce constipation. As a result, the dose should be titrated for the individual patient, and the use of the liquid formula of loperamide is helpful. A recent study also showed reduced intensity of pain associated with improved stool consistency and reduced frequency of defecation. However, the patients treated with loperamide also experienced increased nightly abdominal pain.121 Symptoms of patients with constipation-predominant IBS given loperamide are not improved.122

Cholestyramine is considered a third-line treatment in IBS with predominant diarrhea because of poor palatability and low patient compliance. The rationale for its use is based on the documentation of bile acid malabsorption in some patients with functional, typically painless diarrhea123,124 that mimics IBS with diarrhea. Cholerrheic diarrhea is most typically confirmed by a
therapeutic trial, although it can be diagnosed with
75SeHCAT retention test or measurement in serum of
7α-hydroxycholesten-3-one1,25 in a few centers. Bile acid
sequestration may relieve the cholerrheic effect of bile
acids in patients who have idiopathic bile acid malabsorption.126 However, it is conceivable that a component of bile
adynamic malabsorption may result from rapid ileal transit. The
simpler, often more acceptable approach for patients who
find cholestyramine distasteful would be to use loperam-
ide as a first measure for bile acid malabsorption.

Use of Smooth Muscle Relaxants in IBS?

As noted previously by Klein,86 the field of anti-
spasmodic and anticholinergic therapy in IBS is be-
developed with methodologic problems. In many trials,
significant numbers of patients drop out during follow-
up (up to 60 %), and high placebo response rates (as
high as 69%) are noted. Nevertheless, full randomized,
double-blind, placebo-controlled studies9 of at least 2
weeks’ duration show that abdominal pain was relieved in
68% (mean range, 23%–87%) for active medication
and 31% (mean range, 22%–66%) for placebo. Simi-
larly, for global assessment, mean responses to drug and
placebo were 73% (range, 39%–89%) and 41% (range,
13%–69%), respectively. Meta-analysis of available
studies suggests that some of these agents, such as me-
beverine, octylonium, and cimetropium,9,127 may be
effective although the trial methodology was inadequate by modern standards.86 In the meta-analysis by Poynard
et al.,127 of smooth muscle relaxants in IBS, 5 drugs
demonstrated efficacy over placebo: cimetropium bromide (an
antimuscarinic compound); pinaverium bromide and oc-
tylonium or otilinium bromide (quaternary ammonium
derivatives with calcium-antagonist properties); trime-
butine (a peripheral opiate antagonist); and mebeverine
(a derivative of β-phenyl-ethylamine that has antimus-
carinic cholinergic activity). None of these drugs under-
went extensive trials in North America or received ap-
proval from the Food and Drug Administration. The
commonly prescribed dicyclomine and hyoscine were not
effective in the meta-analysis. Eight trials of peppermint
foil oil for IBS, including a meta-analysis of 5 placebo-
controlled, double-blind trials, have not established a role
for this treatment in IBS.127

In clinical practice, antispasmodics and anticholin-
ergic agents are best used on an as-needed basis up to 2
times per day for acute attacks of pain, distention, or
bloating. Agents such as dicyclomine or mebeverine
seem to retain efficacy when used on an as-needed basis
but become less effective with long-term use. Clidinium
is no longer available as a separate drug and is combined
with a benzodiazepine, chlorodiazepoxide. Although
these drugs have generally fallen out of favor, it remains
to be conclusively demonstrated that the newer medica-
tions (discussed below) are actually superior for pain in
IBS in head-to-head comparisons. This has been demon-
strated in a phase III trial of alosetron versus mebeverine
(discussed below). The development of more gastrointes-
tinal-specific agents with antispasmodic or anticholin-
ergic activity and fewer adverse effects (e.g., salivation,
bladder, cardiac dysfunction) may lead to more effective
use of this class of agents.

Psychotrophic Agents

To date, psychotrophic agents have probably been
best reserved for those patients with diarrhea and pain-

predominant IBS.8 However, there is increasing interest
in the potential application of selective serotonin re-

uptake inhibitors (SSRIs), which tend not to cause con-
stipation and may even induce diarrhea in some patients.
One uncontrolled study128 supports the efficacy of SSRIs
in treating patients with IBS.

Tricyclic agents (e.g., amitriptyline, imipramine, dox-
epin) are now frequently used to treat patients with IBS,
particularly those with more severe or refractory symp-
toms, impaired daily function, and associated depression
or panic attacks. Initially they were used because a high
proportion of patients with IBS reported significant de-
pression.129–131 Antidepressants have neuromodulatory
and analgesic properties, which may benefit patients independently of the psychotrophic effects of the
drugs.130 It seems that the clinical effects of agents such
as amitriptyline result from their central actions. Thus,
amitriptyline had no significant effects on esophageal and
rectal sensory thresholds and compliance in healthy sub-
jects,132 and clinical benefit in the functional upper
gastrointestinal disorder nonulcer dyspepsia seemed to be
associated with better sleep rather changes in gastric
sensitivity.

Neuromodulatory effects may occur sooner and with
lower doses in IBS patients than the doses used in the
treatment of depression (e.g., 10–25 mg amitriptyline or
50 mg desipramine). Because antidepressants must be
used on a continual rather than an as-needed basis, they
are generally reserved for patients with frequently recur-
rent or continual symptoms. A 2–3-month trial is usu-
ally needed before a therapeutic benefit can be excluded.

The placebo-controlled trials of antidepressants in IBS
have been summarized elsewhere.8 In 2 large stud-
ies,133,134 trimipramine decreased abdominal pain, nau-
sea, and depression but did not alter stool frequency. The
beneficial effect seems to be greater in those with ab-
dominal pain and diarrhea. For example, desipramine
Improved abdominal pain and diarrhea,135 whereas in an
earlier study129 that combined patients with diarrhea and those with constipation, there was no significant benefit for desipramine over placebo. Nortriptyline, in combination with fluphenazine, reduced abdominal pain and diarrhea in 2 studies.131,136 Antidepressants do not result in improvement in constipation-predominant IBS. However, this may reflect aggravation of constipation by the confounding anticholinergic effects. The role of serotonin-reuptake inhibitors, which may cause diarrhea,137 is currently the focus of prospective studies.

Hypnotherapy and Other Psychologic Treatments

An alternative therapeutic strategy for patients with significant pain is to use hypnotherapy or psychotherapy, but these approaches are generally less readily available to the practicing physician.138–140 Factors indicating a favorable response to psychotherapy include predominance of diarrhea and pain, association of IBS with overt psychiatric symptoms, and intermittent pain exacerbated by stress.140 In contrast, patients with constant abdominal pain do poorly with psychotherapy140 or hypnotherapy.141 The role of psychologic treatments is discussed in detail in a recent review.9 In a systematic review of the literature, Talley et al.142 concluded that the efficacy of psychologic treatment for IBS has not been established because of methodologic inadequacy. Although 8 studies reported psychologic treatments superior to control therapy, 5 failed to detect a significant effect.

Alternative Therapies in IBS

Several reports have documented the greater use of alternative medicine consultations and therapies in IBS than in “organic” diseases such as Crohn’s disease, ulcerative colitis, and organic upper gut disorders; these include reports from the United Kingdom, Denmark, and Canada.143–145 Use of alternative medical care was positively correlated with scepticism toward conventional medicine and negatively related to perceived health status and satisfaction with a university clinic’s physicians.146 Efficacy of alternative therapies has been difficult to ascertain in view of the lack of controlled trials147; however, a first parallel-group, placebo-controlled 16-week trial of alternative medicine has recently been reported. In this study, individualized or conventional Chinese herbal medicines significantly improved bowel symptom scores and global symptoms and reduced IBS-related interference with life relative to placebo, which was administered in a capsule and was designed to taste, smell, and look similar to a Chinese herb formula.148 Patients receiving individualized Chinese herbal medicine continued to report benefits beyond the actual treatment period.148

5-HT\textsubscript{3} Antagonism in IBS

In the past several years, there have been significant improvements in the design of therapeutic trials. These improvements include better characterization of patient subgroups, exclusion of physiologic disturbances that overlap with or complicate IBS (such as pelvic floor dyssynergia), and use of appropriately powered studies with patient-derived, definable, clinically relevant global endpoints.

Serotonin type 3 and 4 receptors are involved in sensory (Figure 2) and motor (Figure 3) functions of the gut, and are targets for pharmacotherapy in IBS (Table 7).

Alosetron hydrochloride, a selective 5-HT\textsubscript{3} antagonist, is effective in relieving pain (Figure 4), normalizing bowel frequency, and reducing urgency in female patients with diarrhea-predominant IBS.149 Alosetron was recently approved for the treatment of women with IBS whose predominant bowel symptom is diarrhea. 5-HT\textsubscript{3} receptors are extensively distributed on enteric motor
neurons and in peripheral afferents and central locations such as the vomiting center. Antagonism of these receptors reduces visceral pain, colonic transit, and small intestinal secretion. Clinical pharmacology studies of alosetron suggest that it dose-dependently reduces the arterial depressor response to noxious rectal distention in rats; relaxes the colon, increasing thresholds for volume-associated distentions in IBS patients; and retards small bowel and colonic transit in IBS patients, with significantly greater effects in female than in male patients.

Alosetron is rapidly absorbed after oral administration, with peak plasma concentrations after 1 hour. The drug can be taken with or without food.

In large placebo-controlled trials, alosetron was more effective than placebo in inducing adequate relief of pain and discomfort and improvement in bowel frequency, consistency, and urgency in women with diarrhea-predominant IBS. Another study compared alosetron (1 mg twice daily) with mebeverine, an antispasmodic approved in Europe for treatment of IBS, and showed similar results over the active comparator.

The beneficial response for pain and bowel dysfunction was observed within 1–4 weeks of the start of therapy and was sustained throughout the duration of the trial. Within 1 week after discontinuation of the drug, symptoms were comparable to those in women receiving placebo. Benefit was observed only in female patients with diarrhea-predominant IBS symptoms, and further studies in male patients are awaited.

The most common adverse event with alosetron treatment is constipation, which in one trial was significantly more common among women receiving alosetron than among those receiving placebo (28% vs. 5%). The majority of patients reporting constipation had mild to moderate symptoms; only 10% of those patients withdrew from the study because of constipation. A significant adverse event with an unclear relationship to alosetron is acute ischemic colitis, estimated to occur in 0.1%–1% of patients. The reported cases resolved after several days to weeks without sequelae. Risk factors were not identified. The manufacturer initially recommended that the drug should be discontinued in patients who experience rectal bleeding or a sudden worsening of pain.

This medication was withdrawn from the market in November 2000. Other drugs in this class (e.g., cilansetron) are being studied.

Experimental Medications for IBS

The availability of agents with visceral analgesic and sensorimotor-modulatory properties have stimulated much interest in the field of IBS therapy (Table 7). These include the 5-HT3 receptor agonist fedotozine, other 5-HT3 and 5-HT4 antagonists, other serotonergic agents, and NK antagonists, some of which are now becoming available for routine clinical usage.

New partial or full 5-HT4 agonists appear promising in the treatment of constipation or constipation-predominant IBS and are in phase III trials. The partial agonist tegaserod was recently shown to enhance peristalsis in an in vitro model and to do so at least in part by stimulating the intrinsic primary afferent neuron, activating excita-
bowel and colonic contractions after intravenous administration in the dog.159 It reduces visceral afferent firing during rectal distention and reduces abdominal contractions in response to noxious rectal distention, a pseudoaffective model of visceral pain.160 Tegaserod reduces visceral afferents firing during noxious rectal distention.161

Tegaserod results in global relief of IBS symptoms in female patients with constipation-predominant IBS.162 The effective doses of tegaserod are 4–12 mg/day in 2 divided doses (2 mg or 6 mg twice daily). Tegaserod resulted in significant relief of the subjects' global assessment of relief at the study endpoint, which was preset at the last 4 weeks of a 12-week trial. Global relief was measured as at least "somewhat relieved" for all 4 weeks or "complete/considerable relief" of IBS symptoms. It had been demonstrated that "somewhat" relief was associated with significant improvement of a number of secondary endpoints such as pain-free days, frequency of bowel movements, and stool consistency (Figure 6). To date, the tegaserod drug development program consisted of 3 phase III trials; one of the trials involved a titration step. Efficacy observed in the 3 trials was not uniform. However, pooled analysis shows significant benefit of tegaserod over placebo, and this was especially evident when subgroups were analyzed. Specifically, the drug is significantly effective with an approximately 15% advantage over placebo in female patients and in those with documented constipation during the baseline run-in period. Tegaserod's greater efficacy over placebo was also more pronounced if patients who used laxatives more than 5 times during the 12-week study or took any laxative during the last 4 weeks of the study were included.163

Tegaserod also appeared to provide benefit on several secondary endpoints assessed by daily diary responses, e.g., daily pain score, bloating score, and frequency and consistency of bowel movements. The effect on bloating, in particular, deserves further study, because this would

Figure 5. Model of the effect of serotonin on activation of intrinsic primary afferent neurons in the lamina propria after being released from enterochromaffin cells. Similarly, this figure depicts the effect of absorbed tegaserod, a partial 5-HT\textsubscript{4} agonist, on activation of intrinsic primary afferent neurons (e.g., releasing calcitonin gene-related peptide, CGRP), which in turn stimulate myenteric neurons to activate the "peristaltic reflex." This involves an orad contraction, mediated through excitatory transmitters such as acetylcholine (ACH) or substance P (SP), and a caudad relaxation, mediated through inhibitory neurotransmitters such as vasoactive intestinal peptide (VIP), pituitary adenylate cyclase–associated peptide (PACAP), or nitric oxide synthase (NOS). Adapted and reprinted with permission.158

Figure 6. Effect of tegaserod on weekly assessment of mean pain score and number of bowel movements in patients with constipation-predominant IBS. Data on file at Novartis Pharmaceuticals; presented at the Advisory Committee Meeting of the Food and Drug Administration, June 2000.
be the first demonstration that any medication has a significant impact on this enigmatic symptom. The efficacy of tegaserod on bloating would be consistent with the hypothesis that gas transit is abnormal and a potential target for pharmacotherapy. Tegaserod appears quite safe. No serious adverse events have been reported in the clinical trials program and in the cohort treated in open evaluation for more than 6 months. It is anticipated that the medication will be approved for prescription in 2001.

The full 5-HT$_4$ agonist prucalopride induces strong contractions in the proximal colon in vivo in dogs and accelerates colonic transit in healthy participants (Figure 7) and, most importantly, in patients with functional constipation. Prucalopride induced a significant increase in the number of spontaneous and complete bowel movements in phase II trials of patients with functional constipation. Although this group is theoretically distinct from those with constipation–predominant IBS, the differences in these 2 subgroups of patients are probably small, and in clinical practice, patients often receive both diagnoses at different times. The effects of prucalopride on abdominal pain have not been thoroughly assessed, and further studies are needed. However, phase III clinical trials are currently on hold while a more thorough evaluation of potential intestinal carcinogenicity in animal species is evaluated.

Other investigational agents and new approaches (Table 7) that are currently being explored in phase II studies include newer type 3 antimuscarinic agents, cholecystokinin antagonists, the α_2-adrenergic agonists, clonidine, a 5-HT$_1$ agonist, buspirone, and an SSRI, citalopram. At doses of up to 0.3 mg, clonidine has been shown to reduce sensation of gastric and colonic distentions in health without significantly altering gastrointestinal or colonic transit. Clonidine also enhances rectal compliance in health and in IBS. Formal trials of its clinical efficacy are awaited.

Buspirone reduces gastric and colonic responses to volume distentions and may similarly have potential in functional disorders. Citalopram reduces colonic sensation to volume distention. Buspirone’s anxiolytic activity may have an impact on the symptomatic benefits demonstrated in a small clinical trial. Similarly, the sensory and motor effects of citalopram must be evaluated in IBS patients.

Neurokinin antagonists also have therapeutic potential in IBS. Three types of receptor antagonists have been developed and confer benefit through their effects on smooth muscle, intrinsic excitatory neurons, and visceral afferents. Pharmacodynamic studies need to be performed to clarify the subgroups of IBS patients most likely to respond to these agents.

Bloating remains a significant symptom, for which no evidence-based effective therapy. As noted above, tegaserod, a colonic prokinetic, has shown some efficacy on bloating in the phase III program. The parenterally administered anticholinesterase neostigmine reduces experimentally induced intestinal gas, with reduced abdominal girth. However, it also results in a significant increase in abdominal cramping. The prokinetic approach is promising as a means to reduce abdominal bloating, but proper studies in IBS patients with predominant bloating are needed.

Summary and Conclusion

Management of IBS involves positive diagnosis, limited exclusion of organic disease, and reassurance. With insights into enteric neuroscience and a greater understanding of the brain–gut axis, novel therapies are being developed that make a more comprehensive approach possible. Much has been learned about this condition and the ways to study the pathophysiology and develop clinical trials in IBS. The role of infectious agents and neuroimmune interactions and the neurotransmitters involved in pain mediation will be clarified in the next decade and will enhance the management of IBS. However, development of optimal therapies will require collaboration between gastroenterologists, basic neuroscientists, pain pharmacologists, applied physiologists, and clinical trialists.

References

3. Vanner SJ, Depew WT, Paterson WG, DaCosta LR, Groll AG,

167. Bouras EP, Camilleri M, Burton DD, Thomforde G, McKinzie S,
Zinsmeister AR. Prucalopride accelerates gastrointestinal and colonic transit in patients with constipation without a rectal evacuation disorder. Gastroenterology (in press).

175. Caldarella MP, Serra J, Azpiroz F, Malagelada JR. Stimulation of intestinal gas propulsion is the key to treat gas retention in functional patients (abstr). Gastroenterology 2000;118:138A.

Received September 12, 2000. Accepted November 23, 2000.

Address requests for reprints to: Michael Camilleri, M.D., Enteric Neuroscience Program–Gastroenterology Research Unit, Charlton 7-154, Mayo Clinic, 200 First Street S.W., Rochester, Minnesota 55905.

Supported in part by grants R01-DK54681-02 and K24-DK02638-02 and by a General Clinical Research Center grant (RR00585) from the National Institutes of Health.

The author thanks Cindy Stanislav for excellent secretarial assistance.

Dr. Camilleri has received research grants and worked as a consultant to several pharmaceutical companies whose medications are discussed in this article.